Error analysis for Heun’s method
Douglas Wilhelm Harder

In class, it is claimed that the error for Heun’s method is O(h®), but some students are interested in how this
is derived. This is a detailed derivation using Taylor series for multivariate functions, as may have been
seen in your first-year calculus courses. We then give two examples to demonstrate that the error terms
found do reflect the actual applications of Heun’s method for two examples.

An initial-value problem (1vP) is a differential equation together with an initial condition
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Heun’s method says that we will approximate y(to + h) as follows:
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The error analysis for Heun’s method is slightly more involved than that for Euler’s, but uses concepts we
have already introduced previously. Taking one addition term to the Taylor series, we have
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If we substitute this into the first equation, we get
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and by expanding this and substituting y®(t, +h) = f(t, +h,y(t, +h)), we have:
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The problem, is, however, that we do not know the value of y(t, +h), but we do have an approximation of
this value with y, +hs, from Euler’s method.



To determine the contribution of this error, recall that
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where vely,y+e],0r f(ty)= f(t,y+g)—%f(t,u)g. In this case,
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and therefore
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Substituting this back in, we get that
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and therefore
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Substituting this back into our equation,
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Thus, we see that the error is O(h3) )



Example
To demonstrate that this is the correct error formula, we will use the IvP y®(t) =-y(t)+1 with y(0)=0.7,
and from the solution we can estimate the coefficient of the error term for Heun’s method derived above:
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For this 1vpP, we note that y(0.1) = 0.72854877458921212805 and the approximation using Heun’s method
is 0.7285. The error of the approximation is 0.00004877, and we see that this is very close to
0.05 x 0.1% = 0.00005. We also note that y(0.01) = 0.70298504987524958393 and the approximation using
Heun’s method is 0.702985. The error of the approximation is 0.00000004988, and we see that this is even
closer to 0.05 x 0.01% = 0.00000005. The exact solution is y(t) =1 — 0.3e™.

As a second example, we will use the IVP y"(t) =—ty? (t)+1 with y(1)=1.3, we have
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For this second I1vp, we note that y(1.1) = 1.2318764249005373919 and the approximation using Heun’s
method is 1.232155145. The error of the approximation is —0.0002787, and we see that this is very close to
—0.2647 x 0.1° = 0.00026457. We also note that y(1.01) = 1.2931055903341764764 and the approximation
using Heun’s method is 1.2931058565695. The error of the approximation is —0.0000002662, and we see
that this is even closer to —0.2647 x 0.01° = -0.0000002647.

Incidentally, the exact solution to the second IvP is
Bi(t)(Ai(1)-1.3Ai (1)) - Ai(t)(Bi (1) -1.38i" (1))
" Bi® (t)(Ai(1)-13AI" (1)) - A% (1)(Bi(1)-13Bi" (1))
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where Ai and Bi are the Airy functions.

An analysis similar to that for Euler’s method would show that if we applied Heun’s method in multiple
steps, the error would be approximately
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and thus halving the step size will reduce, on average, the error by a factor of four.


https://en.wikipedia.org/wiki/Airy_function

